a2 United States Patent

Faulk, Jr.

US009350702B2

US 9,350,702 B2
May 24, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

VIRTUAL INSERTION INTO A NETWORK

Inventor: Rebert L. Faulk, Jr., Roseville, CA
(US)

Assignee: HEWLETT PACKARD
ENTERPRISE DEVELOPMENT LP,
Houston, TX (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1130 days.

Appl. No.: 12/707,046

Filed: Feb. 17, 2010
Prior Publication Data
US 2011/0202675 Al Aug. 18, 2011
Int. CI.
GOGF 15/16 (2006.01)
HO04L 29/06 (2006.01)
GOG6F 12/00 (2006.01)
U.S. CL
CPC ..o HO4L 63/02 (2013.01); HO4L 29/06

(2013.01)
Field of Classification Search
USPC 709/220-240, 206, 250; 370/230-260;
705/112-138
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,036,229 B2* 10/2011 Banerjeecccooe.ee. 370/397

8,892,708 B2* 11/2014 Merrill etal. 709/223
2007/0005786 Al* 1/2007 Kumaretal. 709/230
2007/0140128 Al* 6/2007 Klinker etal. 370/238
2008/0046549 Al* 2/2008 Saxenaetal. 709/223
2009/0300605 Al* 12/2009 Edwardsetal. ... 718/1
2009/0303883 Al 12/2009 Kucharczyk et al.

OTHER PUBLICATIONS

Anand Gorti and Vijoy Pandey, “OSF-Open Service Framework: An
Integrated High-speed Load Balancing and Fow Steering Frame-
work,” In Proceedings of First Workshop on Data Center—Con-
verged and Virtual Ethernet Switching, DC-Caves, 2009, pp. 1-6.

* cited by examiner

Primary Examiner — Zarni Maung
(74) Attorney, Agent, or Firm — Hewlett Packard Enterprise
Patent Department

(57) ABSTRACT

A network appliance is virtually inserted in a data path within
anetwork. Packet data that matches a criteria is intercepted at
a logical point within the data path. The intercepted packet
data is forwarded to an application running on the virtually
inserted network appliance.

20 Claims, 5 Drawing Sheets

VIRTUALLY INSERT NETWORK APPLIANCE
IN DATA PATH WITHIN NETWORK 4418

INTERCEPT PACKET DATA AT A LOGICAL
POINT WITHIN THE DATAPATH 420

FORWARD INTERCEPTED PACKET DATA
TOVIRTUALLY INSERTED NETWORK
APPLIANCE 430

U.S. Patent May 24, 2016 Sheet 1 of 5 US 9,350,702 B2

VIRTUAL INSERTION MODULE 11€

INTERCEPTION MODULE 120

FORWARDING CIRCUITRY 130

NETWORK DEVICE 100

FIG. 1

U.S. Patent May 24, 2016 Sheet 2 of 5 US 9,350,702 B2

VIRTUAL INSERTION MODULE 210

DTD MODULE 242

INTERCEPTION
CRITERIA 216 APD MODULE 214

INTERCEPTION MODULE 220

RE-INTERCEPTION PREVENTION MODULE 230

PROCESSOR 240 MEMORY 250

NETWORK DEVICE 200

FIG. 2

US 9,350,702 B2

Sheet 3 of 5

May 24, 2016

U.S. Patent

£ Old
253
ANAND

¥t 43
dd¥ N

07 IONVITddY MEOMLIN

Bugiuiy
ey |

85DV
. Pio LINEELN
Guaiy
ssatbu
: AYILS UOHEBSHUSUINE 104
1 L
: P Sio00id JBAB] UM
S NN S
Buuie 7 1 H (0%

UOREORSSRID |
seaifiuy

453
HOLIMS

H00iMd

[]
P lucpEoipsseD sseuliy

=

llllll mm———

: Guusy ssalby
HOLIMS
IER 12

U.S. Patent

May 24, 2016 Sheet 4 of 5

VIRTUALLY INSERT NETWORK APPLIANCE
IN DATA PATH WITHIN NETWORK 440

INTERCEPT PACKET DATA AT ALOGICAL
POINT WITHIN THE DATA PATH 420

¥

FORWARD INTERCEPTED PACKET DATA
TO VIRTUALLY INSERTED NETWORK
APPLIANCE 430

FIG. 4

US 9,350,702 B2

U.S. Patent May 24, 2016 Sheet 5 of 5 US 9,350,702 B2

DYNAMICALLY DEFINE DATATAP 510

;

DEFINE FIRST APPLICATION PATH 520

:
BIND FIRST APPLICATION PATH TO DATA TAP 830
l
INTERCEPT PACKET DATA 540

'

FORWARD INTERCEPTED PACKET DATA 550
l

DEFINE SECOND APPLICATION PATH 560
;

BIND FIRST APPLICATION PATH TO SECOND APPLICATION PATH 570

;

INJECT INTERCEPTED PACKET DATA INTO DATA PATH 580

FIG. 5

US 9,350,702 B2

1
VIRTUAL INSERTION INTO A NETWORK

BACKGROUND

Ina computer network, clients connect to network switches
and/or routers, which frequently connect to the Internet. Vari-
ous network appliances (e.g., Intrusion Prevention Systems
(IPS), wide area network (WAN) accelerators, monitoring
and/or troubleshooting devices, etc.) can be connected to the
network for various purposes.

BRIEF DESCRIPTION OF DRAWINGS

The following description includes discussion of figures
having illustrations given by way of example of implementa-
tions of embodiments of the invention.

FIG. 1 is a block diagram illustrating a device according to
various embodiments.

FIG. 2 is a block diagram illustrating a device according to
various embodiments.

FIG. 3 is a block diagram illustrating a system according to
various embodiments.

FIG. 4 is a flow diagram of operation in a system according
to various embodiments.

FIG. 5 is a flow diagram of operation in a system according
to various embodiments.

DETAILED DESCRIPTION

Network appliances (e.g., IPS, WAN accelerators, moni-
toring and/or troubleshooting devices, etc.) can be added to a
network by physically reconnecting network cables to get
these appliances into the data path of the network. However,
physically reconnecting network cables can be burdensome,
especially in a dynamic network environment. In addition,
physical connections may limit where in the data path an
appliance may be inserted. Embodiments described herein
enable virtual insertion of a network appliance into a network
at desired point in the data path.

Policy based routing allows routed IP (Internet Protocol)
packets matching a certain pattern to be forwarded to the
designated next hop gateway (on a designated port and
VLAN). Furthermore, with policy based routing, packets are
modified in a specific manner—for example, the source MAC
(Media Access Control) address is changed to be that of the
router, the destination MAC address is changed to be that of
the next hop gateway, and the VLAN is changed. Thus, in
policy based routing, the next hop gateway is not given the
original form of the packet. Various embodiments enable
network appliances to receive the original unmodified form of
a packet, or other forms. Furthermore, as described, various
embodiments enable a network appliance to reinject a packet
back into the forwarding data path (or simply data path) in its
original unmodified form.

FIG. 11s ablock diagram illustrating a system according to
various embodiments. Network device 100 may be any
device that connects network segments and/or connects other
devices to each other (e.g., an OSI layer 2 bridge, OSI layer 3
router, etc.). As illustrated, network device 100 includes a
virtual insertion module 110, an interception module 120, and
forwarding circuitry 130. The components (i.e., modules,
circuitry, etc.) shown in FIG. 1 may be logically and/or physi-
cal combined in various embodiments. In alternate embodi-
ments, network device 100 may have more components,
fewer components, and/or different components. The various
components shown in FIG. 1 can be implemented as one or
more software modules, hardware modules, special-purpose

10

20

25

30

40

45

55

2

hardware (e.g., application specific hardware, application
specific integrated circuits (ASICs), embedded controllers,
hardwired circuitry, etc.), or some combination of these.

Virtual insertion module 110 controls virtual insertion of a
network appliance into a forwarding data path. Specifically,
virtual insertion module 110 inserts a network appliance into
the data path based on a data tap. Data taps are described in
more detail below. As used herein, a network appliance
includes network devices that receive data (e.g., packet data),
optionally perform some modification on the data (e.g., add-
ing/changing a packet header, etc.), and optionally return the
data back into the network. Examples of network appliances
might include an Intrusion Prevention System (IPS), WAN
(wide area network) accelerators, monitoring devices,
troubleshooting devices, and the like. Networking devices
that perform routing and/or switching functionality, along
with the network appliance functionality described above,
may also be considered network appliances in certain
embodiments.

In various embodiments, virtual insertion module 110
defines data taps, defines application paths, and binds appli-
cation paths to data taps, described in more detail below.

Interception module 120 intercepts data packets. Intercep-
tion criteria may be based on, but are not limited to, raw ports,
address-based forwarding, flow-based forwarding, ingress
and/or egress classification, logical and/or physical ports,
packet contents, packet flags, flow state, etc. In addition, a
software agent running on network device 100 might be used
as interception criteria. For example, the software agent
might have its own criteria for receiving packets. Interception
module 120 can be configured to intercept packets picked up
by the software agent. In certain embodiments, intercepting
packets via comparing packets against the criteria can be
performed by hardware (e.g., on the network device ASIC)
with no software involvement.

Forwarding circuitry 130 handles the forwarding of inter-
cepted packet data to the network appliance.

FIG. 2 is a block diagram illustrating another system
according to various embodiments. Similar to network device
100, network device 200 includes a virtual insertion module
210 and an interception module 220. Also included are a
re-interception prevention module 230, a processor 240 and
memory 250. The various components, modules, etc. shown
in FIG. 2 can be implemented as one or more software mod-
ules, hardware modules, special-purpose hardware (e.g.,
application specific hardware, application specific integrated
circuits (ASICs), embedded controllers, hardwired circuitry,
etc.), or some combination of these.

Virtual insertion module 210 virtually inserts one or more
network appliances into the forwarding data path using a data
tap descriptor (DTD) module 212 and an application path
descriptor (APD) module 214.

DTD module 212 defines data taps. As used herein, a data
tap describes a logical point in a forwarding data path for
intercepting data packets. Given that many packet processing
tasks are handled concurrently (e.g., by an ASIC) in a net-
working device, the logical point described by the data tap can
be considered a function of priority and/or precedence. Using
packet ingress as an example, a network device might give
precedence to rate limiting over MAC (Media Access Con-
trol) security, or give precedence to port authentication over
OSI Layer 2 (L.2) learning. By defining a logical point within
a group of prioritized packet processing operations, data taps
allow a network appliance to virtually tap into any logical
location in the data path. Rather than being limited to a fixed

US 9,350,702 B2

3
or default point in the data path, DTD module 212 can be
dynamically updated to tap into multiple different logical
locations in the data path.

In various embodiments, DTDs (data tap descriptors) are
described using the GPPC (General Purpose Packet Control)
MIB (management information base) and a policy-based for-
warding CLI (command line interface) syntax. Other suitable
schemes, protocols, syntaxes, etc. could be used in different
embodiments. The GPPC MIB is one example of a tool that
can specify where in the forwarding data path to locate a data
tap. The data path may include a variety of logical locations—
both ingress and egress—including, but not limited to, filter-
ing, classification, [.2 learning, link layer protocols, port
authentication, MAC security, rate limiting, raw ports, soft-
ware agents, NPU (network processing unit), etc. In one
example, DTD module 212 may define an ingress data tap to
intercept a pre-routed form (e.g., with respect to network
device 200) of a data packet and/or an egress data tap to
intercept a post-routed form (e.g., with respect to network
device 200) of a data packet.

APD module 214 defines the application path between the
network appliance and the data tap. More particularly, in
various embodiments, APD module 214 defines the path
between an application running on the network appliance and
the data tap. In some embodiments, an application path may
be defined for an application running on a device other than a
network appliance. In various embodiments, application
paths may be represented as network interfaces to x86 appli-
cations and/or switch agents. One or more tunnel drivers can
be used to convert various encapsulations and/or unencapsu-
lated data to network interfaces. Different interface configu-
ration parameters may be used depending on the interface
type (e.g., raw Ethernet, GRE/IPSec, PCI Express, propri-
etary encapsulations, etc.).

APDs (application path descriptors) may be configured
using standard interface MIBs when standard encapsulations
are used and proprietary MIBs for proprietary encapsula-
tions. In various embodiments, APDs are bound to DTDs
using the GPPC MIB and/or policy-based forwarding CLI
syntax. Other schemes, protocols, syntaxes, etc. could be
used for binding in different embodiments.

Interception module 220 intercepts data packets based on
interception criteria 216 which can be dynamically updated.
Interception criteria may be based on, but are not limited to,
raw ports, address-based forwarding, flow-based forwarding,
ingress and/or egress classification, logical and/or physical
ports, packet contents, packet flags, flow state, etc. In addi-
tion, a software agent running on network device 200 might
beused as an interception criterion. For example, the software
agent might have its own criteria for receiving packets. Inter-
ception module 220 can be configured to intercept packets
picked up by the software agent. In certain embodiments,
intercepting packets via comparing packets against the crite-
ria can be performed by hardware (e.g., on the device ASIC)
with no software involvement.

In certain embodiments, interception module 220 prevents
intercepted packets (or a portion of an intercepted packet)
from being copied or sent to any location other than the
destination defined by the corresponding APD. Re-intercep-
tion prevention module 230 prevents previously intercepted
packets from being re-intercepted by a data tap.

The wvarious components, modules, functions, etc.
described with respect to FIG. 2 may be implemented as
instructions stored on a computer-readable storage medium
(e.g., memory 250) and executed by a processor (e.g., pro-
cessor 240).

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 3 is a block diagram illustrating a network system
according to various embodiments. As shown, network 300
includes a router 310, multiple bridges 312, 316. Switch 312
connects to the Internet 314. Client 318 connects to switch
316. Starred locations in FIG. 3 indicate examples of logical
locations for the data taps described herein. Other suitable
logical locations (e.g., more, fewer, different locations) could
be used in different embodiments. Network appliance 320
and/or application 324 are virtually inserted into the data path
of network 300 via application path 326. As shown, applica-
tion path 326 is intended to illustrate an example of a path
between network appliance 320 and a data tap (illustrated by
a star). In various embodiments, application path 326 is a
bi-directional path, however it could be a unidirectional path
if network appliance 320 were used for monitoring only.

Various logical packet processing operations are shown in
the path between switch 316 and client 318 for ease of illus-
tration. In practice, such packet processing operations are
actually performed within switch 316 in various embodi-
ments. As discussed above, packet processing operations may
be handled concurrently by a network device (e.g., switch
316) and thus, the logical flow illustrated in FIG. 3 is based on
a priority or precedence of operations—both for ingress and
egress—with respect to switch 316.

Network 300 may be implemented as separate network
devices in some embodiments or some or all of network 300
could be implemented in a single ASIC or CPU in other
embodiments.

FIG. 4 is a flow diagram of operation in a system according
to various embodiments. An entity virtually inserts 410 a
network appliance in a data path within a network. Inasmuch
as the logical flow of the data exists within a network device,
the network device (e.g., a virtual insertion module within the
network device) acts as the inserting entity in various embodi-
ments. As described above, the inserting entity can be imple-
mented as one or more software modules, hardware modules,
special-purpose hardware (e.g., application specific hard-
ware, application specific integrated circuits (ASICs),
embedded controllers, hardwired circuitry, etc.), or some
combination of these.

By virtually inserting a network appliance, physical re-
cabling and re-connecting can be avoided. In various embodi-
ments, the virtual insertion is dynamic, meaning that the
virtual location of the network appliance in the data path can
be changed and updated (e.g., via data tap descriptors and
application path descriptors) without the need to physically
move the network appliance. The virtual insertion is also
dynamic in that the data tap location may be changed and
updated.

The network device intercepts 420 packet data at a logical
point within the data path on the network based, at least in
part, on a criterion. The criterion (or criteria) could be flow-
based, port-based, classification-based, or based on any other
suitable packet-related attribute.

In various embodiments, the network device forwards 430
intercepted packet data to an application running on the vir-
tually inserted network appliance. In alternate embodiments,
intercepted packet data may be forwarded to any location
capable of processing (e.g., with a processing unit) the packet
data.

FIG. 5 is a flow diagram of operation in a system according
to various embodiments. To effectuate the virtual insertion
described above, the system (or component, module, etc.
thereof) dynamically defines 510 a data tap that describes a
logical point within a data path to intercept data. For example,
a data tap might specity a logical data path point between
egress filtering and egress classification. Or, in another

US 9,350,702 B2

5

example, a data tap might specify the logical point in the data
path between port rate limiting and the application of MAC
security. Other logical points in the data path could be
described by a data tap. Data taps are dynamic in various
embodiments given that they may be updated and/or changed,
for example, based on network conditions or other suitable
factors.

The system defines 520 at least a first application path from
a data tap to an application running on a virtually inserted

5

network appliance. Application paths can be defined as net- 10

work interfaces using MIBs, tunnel drivers, encapsulations,
DMAs (direct memory accesses), or other suitable tech-
niques.

The system binds 530 the first application path to the data
tap. The binding combination of the application path and the
data tap results in the virtual insertion of the network appli-
ance at the logical location defined by the data tap.

Having virtually inserted the network appliance via bind-
ing an application path to a data tap, the system intercepts 540
packet data at the logical point in the data path defined by the
data tap. Intercepted data is forwarded 550 to the virtually
inserted network appliance. In various embodiments, the
intercepted data is forwarded to an application running on the
network appliance. In other embodiments, the intercepted
data may be forwarded elsewhere on the network.

In certain embodiments, the system may define 560 a sec-
ond application path from the data tap. Binding 570 the first
application path to the second application path allows differ-
ent application to be chained together at a particular data tap.

Intercepted packet data may be processed, modified, etc.
by the application (or network appliance, etc.) receiving the
intercepted data. In various embodiments, intercepted pack-
ets are injected 580 back into the data path (e.g., by the
virtually inserted network appliance). In some embodiments,
packets are injected in a pre-interception format. In other
words, packets are injected such that there is no indication
that they were intercepted in the first place. In other embodi-
ments, packets are injected back into the data path in some
other format.

The invention claimed is:

1. A method, comprising:

virtually inserting, by a processor, a network appliance in
any one of a plurality of logical points within a data path
of'a network, including defining a data tap that describes
one of the plurality of logical points within the data path
to intercept data and defining a first application path
between the data tap and the network appliance, wherein
the network appliance is virtually inserted into a location
in the data path of the network without physically con-
necting the network appliance into the location in the
data path;

intercepting, by the processor, packet data at the described
logical point within the data path of the network when
the packet data matches a criteria; and

forwarding, by forwarding circuitry, the intercepted packet
data to a first application running on the network appli-
ance.

2. The method of claim 1, wherein virtually inserting the

network appliance in the data path further comprises:

binding the first application path to the data tap.

3. The method of claim 2, further comprising:

defining a second application path between a second appli-
cation running on the network appliance and the data
tap; and

binding the first application path to the second application
path.

15

20

30

35

40

45

50

55

60

65

6

4. The method of claim 1, further comprising:

returning the intercepted packet data from the network
appliance to the data path in a pre-intercepted format.

5. The method of claim 1, wherein intercepting packet data
comprises:

intercepting the packet data based on a priority of the
packet data.

6. The method of claim 1, wherein the criteria for inter-
cepting packet data includes whether packet data is traveling
to or from an agent of a switch.

7. A network device, comprising:

a virtual insertion module to virtually insert a network
appliance into any one of a plurality of logical points
within a data path of a network, including a data tap
descriptor module to define a data tap that describes one
of the plurality of logical points in the data path for
intercepting data packets in a network, and an applica-
tion path descriptor module to define a first application
path between the data tap and the network appliance;

an interception module to intercept data packets at the
described logical point in the data path of the network
based on an interception criteria;

forwarding circuitry to forward the intercepted data pack-
ets to the network appliance; and

a processor to implement the data tap descriptor and the
application path descriptor module of the virtual inser-
tion module, and the interception module.

8. The network device of claim 7, wherein the data tap is

dynamically updated with an updated interception criteria.
9. The network device of claim 7, wherein the data tap
descriptor module is further to:
define an ingress data tap to intercept a pre-routed form of
apacket and an egress data tap to intercept a post-routed
form of a packet.
10. The network device of claim 9, wherein the data tap
descriptor module is further to prevent an intercepted packet
or a portion of an intercepted packet from being copied to a
location other than the network appliance.
11. The network device of claim 7, further comprising:
are-interception prevention module to prevent a previously
intercepted data packet from being re-intercepted by the
data tap.
12. The network device of claim 7, further comprising an
injection module to return the intercepted data packets from
the network appliance to the data path at the data tap.
13. A non-transitory computer-readable storage medium
containing instructions that, when executed, cause a com-
puter to:
virtually insert a network appliance in any one of a plurality
of logical points within a data path of a network, includ-
ing:
define a data tap that describes one of the plurality of
logical points in the data path for intercepting data
packets in the network;

define a first application path between the network appli-
ance and the data tap; and

bind the first application path to the data tap.

14. The non-transitory computer-readable storage medium
of claim 13, comprising further instructions that cause the
computer to:

intercept data packets at the described logical point in the
data path based on an interception criteria; and

route the intercepted data packets to the network appliance.

15. The non-transitory computer-readable storage medium
of claim 14, comprising further instructions that cause the
computer to:

US 9,350,702 B2

7

return the intercepted data packets from the network appli-
ance to the data path of the network in a pre-interception
format.

16. The non-transitory computer-readable storage medium
of claim 13, comprising further instructions that cause the
computer to:

prevent the intercepted data packets or a portion of the

intercepted data packets from being copied to a location
other than the network appliance.

17. The non-transitory computer-readable storage medium
of claim 13, wherein the instructions that cause the binding
are implemented, at least in part, via one or more of a man-
agement information base (MIB) and a policy-based forward-
ing command line interface (CLI) syntax.

18. The non-transitory computer-readable storage medium
of claim 13, comprising further instructions to cause the
computer to:

modify the data tap to describe a different logical point in

the data path for intercepting data packets;

5

10

8

modify the first application path to define a new application
path between the network appliance and the modified
data tap.

19. The non-transitory computer-readable storage medium
of'claim 13, wherein the instructions to define the application
path comprise one or more of a direct memory access (DMA)
instruction, a queuing instruction, a destination port, a desti-
nation virtual machine (VM), a packet encapsulation type.

20. The non-transitory computer-readable storage medium
of claim 13, further comprising instructions to cause the
computer to:

define a second application path between a second appli-
cation running on the network appliance and the data
tap; and

bind the first application path to the second application
path.

